Acknowledgment. This research was supported by the Kurata Foundation.

Supplementary Material Available: Characteristic ${ }^{13} \mathrm{C}$ NMR data for free ethers and their complexes with MAD and experimental details and figures for complexation chromatography (6 pages). Ordering information is given on any current masthead page.

Generation and Trapping of 1,5-Dehydroquadricyclane

Jochen Kenndoff, Kurt Polborn, and Günter Szeimies*

Institut für Organische Chemie der Universität München
 Karlstrasse 23, D-8000 München 2, West Germany

Received April 6, 1990
Several years ago evidence was provided for the existence of 1,7-dehydroquadricyclane (1) as a reactive intermediate. ${ }^{1-3} \quad 1$ was generated by treatment of $3 f$ with lithium 2,2,6,6-tetramethylpiperidide in the presence of anthracene, 2,5-dimethylfuran, or trimethylisoindole and trapped as a Diels-Alder adduct. Under these reaction conditions, no indications were obtained for the formation of 1,5 -dehydroquadricyclane (2), whereas the reaction of $\mathbf{3 f}$ with n-butyllithium proceeded via $\mathbf{1}$ as the major and $\mathbf{2}$ as the minor intermediate. ${ }^{1.2}$ We now report on the controlled generation of 2 and on some trapping experiments of this highly strained pyramidalized bridgehead olefin.

Schlosser ${ }^{4}$ and Brandsma ${ }^{5}$ have shown independently that norbornadiene 4a can be metalated at the vinylic position to give $\mathbf{4 b}$ (or $\mathbf{4 c} / \mathrm{d}$) by the mixture of n-butyllithium (BuLi) and sodium tert-butoxide or potassium tert-butoxide in tetrahydrofuran at $\mathbf{- 7 8}$ ${ }^{\circ} \mathrm{C}$. We have used this reaction and converted 4 d with 1,2 -dibromoethane into 2-bromonorbornadiene $\mathbf{4} \mathbf{e}^{6}$ in 40% yield and with 4 -toluenesulfonyl chloride into 2 -chloronorbornadiene $4 f^{6}$ in 34% yield.

With respect to $\mathbf{4 a}$, the acidity of C-3 in $\mathbf{4 e}$ and $\mathbf{4 f}$ should be enhanced by the vicinal halide. Indeed, treatment of $4 f$ with tert-butyllithium (t-BuLi) in THF/pentane at $-78^{\circ} \mathrm{C}$ for 45 min produced a yellow precipitate. Addition of 1,2-dibromoethane to the stirred suspension, warming to room temperature, and aqueous workup afforded a 44% yield of 2-bromo-3-chloronorbornadiene $4 \mathrm{~g} .7,8$ The ${ }^{13} \mathrm{C}$ NMR spectrum of the precipitate in THF- d_{8} was consistent with 2 -chloro-3-lithionorbornadiene 4 h [58.22 (d), 60.28 (d), 72.18 (t), 139.91 (d), 144.45 (d), 159.47

[^0]

Figure 1. ORTEP view of 6a. The thermal ellipsoids are drawn at the 20% probability level. Hydrogens were omitted for clarity. Selected interatomic distances are as follows (\AA): $\mathrm{Cl}-\mathrm{O} 12,1.481$ (3); $\mathrm{Cl}-\mathrm{C} 2,1.519$ (4); $\mathrm{Cl}-\mathrm{Cl} 1,1.520$ (5); $\mathrm{Cl}-\mathrm{Cl} 7,1.500$ (4); $\mathrm{C} 2-\mathrm{C} 3,1.516$ (5); $\mathrm{C} 2-\mathrm{C} 4$, 1.492 (4); С2-C8, 1.546 (4); С3-C4, 1.529 (5); С3-C7, 1.536 (4); C4-C5, 1.517 (4).
(s), 178.55 (s)]. Mixtures of 4 h in THF were stable at room temperature, but decomposed in boiling THF in the presence of 2,5-dimethylfuran to a black solution, from which $4 f$ was isolated as the sole product. No evidence was observed for the formation of norbornenyne $5 .{ }^{9}$

Fast lithium-bromine exchange excluded the use of t-BuLi as a base for the lithiation of 4 e to give 4 i .4 j was obtained by reaction of $4 \mathbf{d}$ with the bromide $\mathbf{4 e}$ in THF at -65 to $-55^{\circ} \mathrm{C}$ for 2 h . Addition of 1,2 -dibromoethane to the suspension of $\mathbf{4} \mathbf{j}$ afforded a 65% yield of $\mathbf{4 k}$. The reaction sequence allows a one-pot synthesis of $\mathbf{4 k}$ starting from $\mathbf{4 a}$ without isolation of 4 e : After metalation of norbornadiene with $\mathrm{BuLi} / \mathrm{KO}-t-\mathrm{Bu}$ in THF at -105 to $-35^{\circ} \mathrm{C}, 0.50$ equiv of 1,2 -dibromoethane was added and the mixture kept at $-35^{\circ} \mathrm{C}$ for 1 h . Addition of the remaining 0.50 equiv of dibromoethane at $-35^{\circ} \mathrm{C}$, warming to room temperature, and aqueous workup gave rise to a 53% yield of $4 \mathbf{k}^{8,10}$

Conversion of $\mathbf{4 g}$ and 4 k into the quadricyclanes $3 \mathrm{~g}^{11}$ and $3 \mathbf{k}^{8,12}$ was achieved in yields of 66 and 77% by irradiating 0.40 M solutions of the norbornadienes in ether at room temperature with a $150-\mathrm{W}$ mercury high-pressure lamp in a glass apparatus in the presence of $5 \mathrm{~mol} \%$ of acetophenone.

When a solution of 3 k in THF/pentane at $-78^{\circ} \mathrm{C}$ was treated with 2.0 equiv of $t-\mathrm{BuLi}$ and the mixture kept at this temperature for 1 h , addition of chlorotrimethylsilane led to bromosilane 31 in 60% yield. This result indicates that 3 i was formed by lithi-um-bromine exchange, but that at $-78^{\circ} \mathrm{C} \mathrm{LiBr}$ elimination to give 2 did not take place. However, when the cooled solution (-78 ${ }^{\circ} \mathrm{C}$) of $\mathbf{3 i}$ was transferred by syringe to a solution of diphenylisobenzofuran in THF and the mixture was allowed to warm to $20^{\circ} \mathrm{C}$ and kept at this temperature for 30 min , aqueous workup and removal of excess diene with maleic anhydride ${ }^{13}$ afforded a 40% yield of an $84: 16$ mixture of $\mathbf{6 a} \mathbf{a}^{8,14}$ and $7 \mathrm{a}^{8,15}$ 7a was less

[^1]soluble in ether than 6a and could be purified from that solvent, whereas 6 a was obtained pure after several crystallization from acetonitrile. The structure of $6 a$ was determined by X-ray diffraction ${ }^{16}$ and is depicted in Figure $1 .{ }^{17}$

a: $X=O, R=P h ; \quad b: X=N M e, R=M e$

8

10

9

11

At $83: 17$, the ratio of $\mathbf{6 a}$ to $\mathbf{7 a}$ (total yield 36%) remained practically unchanged when the reaction sequence was carried out with $\mathbf{3 g}$ instead of $\mathbf{3 k}$. The result is in accord with $\mathbf{2}$ as the common intermediate.

In two further experiments, a solution of $3 i$ in THF/pentane was allowed to warm from $-78^{\circ} \mathrm{C}$ to room temperature in the presence of 1,2,3-trimethylisoindole and, respectively, of 2,5-dimethylfuran. In the first case, aqueous workup afforded a 65% yield of adduct $\mathbf{6 b} ; ;^{8.18}$ NMR spectroscopy of the crude material did not provide any evidence for the formation of the syn isomer 7b. With dimethylfuran as a trap for 2, a 3:1 mixture of 8 and 9^{19} was obtained in 23% yield as a liquid, the components of which could not be separated.

So far, several attempts at isomerizing the quadricyclanes $\mathbf{6 a}$ and $7 \mathbf{a}$ to the corresponding oxasesquinorbornatrienes were unsuccessful. After chromatography of $6 a$ or $7 a$ on a silica gel column, the epoxides 10^{20} and, respectively, 11^{21} were obtained as main products. In addition, 11 was formed after refluxing a solution of 7a in acetonitrile for 1 h . Presumably, these rearrangements are effected by electrophilic catalysis via cationic

[^2]intermediates. The structure of 11 was established by X-ray crystallography. ${ }^{22}$

Acknowledgment. This work was supported by the Deutsche Forschungsgemeinschaft and by the Fonds der Chemischen Industrie.

Supplementary Material Available: Tables of atomic positional parameters, anisotropic thermal parameters, hydrogen atom positions, bond distances, and bond angles of $6 \mathbf{a}$ and additional spectroscopic information for $\mathbf{4 g}, \mathbf{4 k}, \mathbf{3 k}, \mathbf{6 a}, \mathbf{7 a}, \mathbf{6 b}, 10,11$ (5 pages). Ordering information is given on any current masthead page.
(22) Details on the X-ray structure of 11 will be published at a later point.

Stereodivergent Synthesis of 1,2-Diol Derivatives via α-Alkoxy Organolead Compounds. $\mathrm{S}_{\mathrm{E}} 2$-Retention Pathway

Jun-ichi Yamada, Hidenori Abe, and Yoshinori Yamamoto*
Department of Chemistry, Faculty of Science
Tohoku University, Sendai 980, Japan
Received April 3, 1990
α-Alkoxy organometallic compounds ($1 ; \mathrm{M}=\mathrm{Sn},{ }^{1} \mathrm{Li},{ }^{1,2} \mathrm{MgX},{ }^{3}$ $\mathrm{CuX}{ }^{4}$) are versatile reagents in organic synthesis. However, access to 1,2 -diols via these reagents produces some difficulties. For example, the condensation of $1(\mathrm{M}=\mathrm{Li}, \mathrm{MgBr}, \mathrm{CuX})$ with benzaldehyde produces a low syn diastereoselectivity especially in the case of primary and secondary R groups. ${ }^{3}$ Previously, we reported that tetraalkyllead compounds react smoothly with aldehydes. ${ }^{5}$ If functionalized alkyl groups could be transferred stereoselectively to aldehydes in addition to such a simple alkyl group transfer, the synthetic utility of our Pb method would be enhanced. Accordingly, we prepared, for the first time, α-alkoxy organolead compounds $\mathbf{1}(\mathrm{M}=\mathrm{Pb})$ and investigated the condensation of $1(\mathrm{M}=\mathrm{Pb})$ with aldehydes. Here, we report that (i) the stereodivergent synthesis of 1,2 -diol derivatives is accomplished by the condensation of $1(\mathrm{M}=\mathrm{Pb})$ with aldehydes by merely changing Lewis acids (eq 1) and also (ii) the reaction proceeds through $\mathrm{S}_{\mathrm{E}} 2$-retention.

α-Methoxy organolead compounds 5^{6} were prepared by transmetalation of the corresponding α-methoxy organostannanes 4^{7} with n-butyllithium followed by trapping with $n-\mathrm{Bu}_{3} \mathrm{PbBr}$ at

[^3]
[^0]: (1) Harnisch, J.; Baumgärtel, O.; Szeimies, G.; Van Meerssche, M Germain, G.; Declercq, J.-P. J. Am. Chem. Soc. 1979, 101, 3370.
 (2) Baumgärtel, O.; Szeimies, G. Chem. Ber. 1983, 116, 2180.
 (3) Baumgārtel, O.; Harnisch, J.; Szeimies, G.; Van Meerssche, M.; Germain, G.; Declercq, J.-P. Chem. Ber. 1983, 116, 2205
 (4) Stähle, M.; Lehmann, R.; Kramar̆, J.; Schlosser, M. Chimia 1985, 39, 229.
 (5) Verkruijsse, H. D.; Brandsma, L. Recl. Trav. Chim. Pays-Bas 1986, 105, 66.
 (6) $4 e$ and $4 f$ are known compounds: see ref 2. For 4f, see also: Davies, D. I. J. Chem. Soc. 1960, 3669.
 (7) $4 \mathrm{~g}:$ bp $74-77{ }^{\circ} \mathrm{C} / 12$ Torr; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 56.88$ (d), 57.88 (d), 71.42 (t), 128.24 (s), 140.99 (d), 141.57 (d), 143.93 (s).
 (8) Further spectral data are available as supplementary material

[^1]: (9) The intermediacy of 2 -norbornyne has been established: Gassman, P. G.; Gennick, I. J. Am. Chem. Soc. 1980, 102, 6864.
 (10) 4k: bp $85-86^{\circ} \mathrm{C} / 12$ Torr; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 58.52$ (d), 71.84 (t), 132.91 (s), 141.09 (d).
 (11) 3g: bp $20^{\circ} \mathrm{C} / 0.01$ Torr; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 24.17$ (d), 24.93 (d), 30.68 (t), 34.38 (d), 35.17 (d), 39.07 (s), 49.80 (s).
 (12) 3k: bp $25^{\circ} \mathrm{C} / 0.01$ Torr; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 24.84$ (d), 30.93 (t), 35.04 (d), 39.19 (s); HRMS calcd for $\mathrm{C}, \mathrm{H}_{9}{ }^{99} \mathrm{Br}^{81} \mathrm{Br} 249.881$, found 249.876. (13) Wittig, G. Organic Syntheses; Wiley: New York, 1963; Collect. Vol. IV, p 964.
 (14) 6a: mp |5|-153 ${ }^{\circ} \mathrm{C}$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta \mid 5.45$ (d, C-3, C-7), 25.75 (d, C-4, C-6), 36.26 (t, C-5), 42.01 ($\mathrm{s}, \mathrm{C}-2, \mathrm{C}-8$), 87.93 ($\mathrm{s}, \mathrm{C}-1, \mathrm{C}-9$), 118.98, $126.79,127.09,128.15,128.27$ (5 d), $136.21,146.29$ (2 s).

[^2]: (15) 7a: mp 186.5-188 ${ }^{\circ} \mathrm{C}$; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 16.20$ (d, C-3, C-7), 27.57 (d, C-4, C-6), 36.48 (t, C-5), 40.59 (s, C-2, C-8), 89.39 (s, C-1, C-9), $118.74,126.40,126.47,127.83,128.32$, (5 d), $137.17,148.71$ (2 s).
 (16) X-ray crystal data of $6 \mathrm{a}\left(\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{O}\right): M=360.460$; monoclinic; space group $=P 2_{1} ; Z=2 ; a(\mathrm{pm})=801.4(2) ; b(\mathrm{pm})=835.4(2) ; c(\mathrm{pm})=1396.4$ (4); $\beta=91.18(2)^{\circ} ; V\left(\mathrm{~nm}^{3}\right)=0.93462 ; D_{\text {calced }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)=1.281$. The data were collected on an Enraf-Nonius CAD-4 diffractometer using Mo K α radiation. A total of 2792 refections $(\pm h, \pm k, l)$ were collected in the range $4^{\circ}<2 \theta<46^{\circ}$ with 1322 having $I>2 \sigma(I)$ being used in the structure refinement by full-matrix least-squares techniques (252 variables). Final R $=0.0286, R_{w}=0.0243$.
 (17) Molecules of quadricyclane frameworks related to syn-sesquinorbornatrienes have recently been synthesized: Paquette, L. A.; Künzer, H.; Kesselmayer, M. A. J. Am. Chem. Soc. 1988, $110,6521$.
 (18) 6b: waxy solid, mp $46-52{ }^{\circ} \mathrm{C}$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 11.54\left(\mathrm{q}, \mathrm{CCH}_{3}\right)$, 15.39 (d, C-3, C-7), 22.14 (d, C-2, C-8), $29.62\left(\mathrm{NCH}_{3}\right), 68.12(\mathrm{~s}, \mathrm{C}-\mathrm{I}, \mathrm{C}-9)$, 119.16, 126.12 (2 d), 146.02 (s).
 (19) 8: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 10.08(\mathrm{~d}, \mathrm{C}-3, \mathrm{C}-7), 15.42\left(\mathrm{q}, \mathrm{CH}_{3}\right), 24.20$ (d, C-4, C-6), 36.35 (t, C-5), 40.33 (s, C-2, C-8), 84.98 (s, C-1, C-9), 135.47 (d, C-10, C-11). 9: ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 14.99(\mathrm{~d}, \mathrm{C}-3, \mathrm{C}-7), 16.29\left(\mathrm{q}, \mathrm{CH}_{3}\right)$, 24.41 (d, C-4, C-6), 37.72 (t, C-5), 39.20 (s, C-2, C-8), 86.21 (s, C-1, C-9), 138.30 (d, C-10, C-11).
 (20) 10: mp $193-196{ }^{\circ} \mathrm{C}$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 43.65,48.67(2 \mathrm{~d}, \mathrm{C}-1$, C-9), 50.46 ($\mathrm{t}, \mathrm{C}-9$), $68.66,78.34$ ($2 \mathrm{~s}, \mathrm{C}-2, \mathrm{C}-4$).
 (21) 11: mp $180.5-182{ }^{\circ} \mathrm{C},{ }^{13} \mathrm{C}$ NMR (CDCl ${ }^{\text {3 }}$) $\delta 46.10,46.83(2 \mathrm{~d}, \mathrm{C}-1$, $\mathrm{C}-9$), 52.61 ($\mathrm{t}, \mathrm{C}-12$) $, 67.93,76.78(2 \mathrm{~s}, \mathrm{C}-2 \mathrm{C}-4)$.

[^3]: (1) (a) Pereyre, M.; Quintard, J.-P.; Rahm, A. Tin in Organic Synthesis; Butterworth: London, 1987. (b) Sawyer, J. S.; Kucerovy, A.; Macdonald, T. L.; McGarvey, G. J. J. Am. Chem. Soc. 1988, 110, 842.
 (2) (a) Cohen, T.; Maty, J. R. J. Am. Chem. Soc. 1980, 102, 6900. (b) Cohen, T.; Lin, M.-T. J. Am. Chem. Soc. 1984, 106, 1130.
 (3) McGarvey, G. J.; Kimura, M. J. Org. Chem. 1982, 47, 5420.
 (4) (a) Linderman, R. J.; Godfrey, A. J. Am. Chem. Soc. 1988, 110, 6249. (b) Linderman, R. J.; Godfrey, A. Home, K. Tetrahedron 1989, 45, 495. (5) Yamamoto, Y.; Yamada, J. J. Am. Chem. Soc. 1987, 109, 4395. (6) ${ }^{1} \mathrm{H} \mathrm{NMR}$ (CDCl $3,270 \mathrm{MHz}$): $5 \mathrm{a}, \mathrm{PbCH}(\mathrm{OMe}) \mathrm{CH}_{2} \delta 4.370(1 \mathrm{H}$, $\mathrm{dd}, J=5.5$ and 7.5 Hz), 207 Pb satellites gave $J_{\mathrm{H}, \mathrm{pb}}=82 \mathrm{~Hz} ; 5 \mathrm{~b}, \mathrm{PbCH}$ $(\mathrm{OMe}) \mathrm{CH} \delta 4.185(1 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}),{ }^{20} \mathrm{~Pb}$ satelifites gave $J_{\mathrm{H}, \mathrm{Pb}}=74 \mathrm{~Hz}$.

